
Optimisation 

Derivative-free optimization: 
From Nelder-Mead to global 
methods 



Definition 

Optimizing a function is looking for the set of 
values of the variables that will maximize (or 
minimize) the function. 

Optimization is usually a very complex problem. 
There are many different techniques, each 
being adapted to a specific kind of problems. 

There is no universal method, but a set of tools 
which requires a lot of experience to be used 
properly.  



Optimization caracteristics 

 Global/local optimization 
Global optimization is searching for the absolute extremum of the 

function over its entire definition domain 

Local optimization is looking for the extremum of the function in 
the vicinity of a given point 

 Stochastic / deterministic methods 
A stochastic method searches the definition domain of the 

function in a random way . Two succesive runs can give different 
résults. 

A deterministic method always walks the search space in the 
same way, and always gives the same results. 
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Part I 
Local deterministic methods 



Derivation (deterministic) 

When it is possible to compute and solve 
f’(x)=0, then we know that the extrema of 
the function are in the set of solutions. 
This method can only be used for very 

simple analytic functions 



Gradient method 
(deterministic and local) 

 If f(X) is a real valued 
function of a real valued 
vector X, and we can 
calculate f’(X), we compute: 

 Xn+1 = Xn - a f’(Xn), a>0 
 The best choice of a>0 is 

done by minimizing: 
 G(a)=f(Xn– a f’(Xn)) 
 It’s usually impossible to 

solve the above equation and 
approximate methods are 
used. 



Local, deterministic, order 
2, methods. 

To accelerate computation we use the 
computation of the first and second order 
derivatives of the function 
We need to be able to compute both, in a 

reasonnable amount of time. 



Local, deterministic, order 
2, methods. 

f(y) = f(x) + f’(x) (y-x) + ½ f’’(x) (y-x)2 + d 

We minimize the y quadratic form: 
f’(x)+f’’(x)(y-x)=0 => y = x – f’(x)/f’’(x) 

Algorithm: 
xn+1 = xn – f’(xn) / f’’(xn) 

Known as Newton method 
Convergence is (much) faster than the 

simple gradient method. 



Newton 



Deterministic method: 
BFGS 

BFGS approximates the hessian matrix 
without explicitly computing the hessian 
It only requires knowledge of the first 

order derivative. 
It’s faster than gradient, slower (but 

much more practical) than Newton 
One of the most used method.  

 
 



BFGS 



Local deterministic: 
Nelder-Mead simplex 

Works by building an n+1 points polytope for 
an n variables function, and by shrinking, 
expanding and moving the polytope. 
There’s no need to compute the first or 

second order derivative, or even to know the 
analytic form of f(x), which makes NMS very 
easy to use. 
The algorithm is very simple. 



Nelder-Mead simplex 

Choose n+1 points (x1,..xn+1) 
Sort: f(x1)<f(x2)…<f(xn+1) 
Compute barycenter: x0 = (x1+…+xn)/n 
Reflection of xn+1/x0: xr=x0+(x0-xn+1) 
If f(xr)<f(x1), xe=x0+2(x0-xn+1). If f(xe)<f(xr), 

xn+1<-xe, else xn+1<-xr, back to sort. 
If f(xn)<f(xr), xc=xn+1+(x0-xn+1)/2.If f(xc)<f(xr) 

xn+1<-xc, back to sort 
Otherwise: xi <- x0+(xi-x1)/2. Back to sort. 



Nelder Mead 



Part II 
Global stochastic methods 



Stochastic optimization 

Do not require any regularity (functions 
do no even need to be continuous) 
Usually expensive regarding computation 

time, and do not guarantee optimality 
There are some theoretical convergence 

results, but they usually don’t apply in day 
to day problems. 



Simulated annealing 

Generate one random starting point x0inside the 
search space. 
Build xn+1=xn+B(0,s) 
Compute: tn+1=H(tn) 
If f(xn+1)<f(xn) then keep xn+1 

If f(xn+1)>f(xn) then : 
If |f(xn+1)-f(xn)|<e- k t then keep xn+1 

Si |f(xn+1)-f(xn)|>e- k t then keep xn 



Important parameters 

H (the annealing schedule): 
Too fast=>the algorithm converges very 

quickly to a local minimum 
Too slow=>the algorithm converges painfully 

slowly. 

Deplacement: B(0,s) must search the 
whole space, and mustn’t jump too far or 
too close either 



Efficiency 

SA can be useful on problems too difficult 
for « classical methods » 
Genetic algorithms are usually more 

efficient when it is possible to build a 
« meaningful » crossover 



Genetic algorithms (GA) 

Search heuristic that « mimics » the process 
of natural evolution: 
Reproduction/selection 
Crossover 
Mutation 

John Holland (1960/1970) 
David Goldberg (1980/1990). 



Coding / population 
generation 

If x is a variable of f(x), to optimize on the 
interval [xmin,xmax]. 
We rewrite x :2n (x-xmin)/(xmax-xmin) 
This gives an n bits string: 
For n=8: 01001110 
For n=16: 0100010111010010 

A complete population of N (n bits string) is 
generated. 



Crossover 

Two parents : 
01100111 
10010111 

One crossover point (3): 
011|00111 
100|10111 

Two children: 
011|10111 
100|00111 



Mutation 

One randomly chosen element: 
01101110 

One mutation site (5): 
01101110 

Flip bit value: 
01100110 

 



Reproduction/selection 

For each xi compute f(xi) 
Compute S=Σ(f(xi)) 
Then for each xi : 
p(xi)=f(xi)/S 

The n elements of the new population are 
picked from the pool of the n elements of the 
old population with a bias equal to p(xi). 
Better adapted elements are more reproduced 



Exemple de reproduction 

f(x)=4x(1-x)  
x in [0,1[ 



AG main steps 

Step 1: reproduction/selection 
Step 2: crossing 
Step 3: mutation 
Step 4: End test. 



Scaling 

Fact: in the « simple » AG, the fitness of 
an element x is equal to f(x) 
Instead of using f(x) as fitness, f is 

« scaled » by using an increasing function. 
Exemples: 
 5 (f(x)-10)/3: increase selection pressure 
 0.2 f + 20 : diminishes selection pressure 

There are also non-linear scaling functions 



Scaling examples 



Sharing 

Selection pressure can induce too fast 
convergence to local extrema. 
Sharing modifies fitness depending on the 

number of neighbours of an element: 
fs(xi)=f(xi)/Σj s(d(xi,xj)) 
s is a decreasing function. 
d(xi,xj) is a distance measurement between i 

et j 



Sharing 

To use sharing, you need a distance 
function over variables space 
General shape of s: 



Bit string coding problem 

Two very different bit strings can 
represent elements which are very close 
to each other: 
If encoding real values in [0,1] with 8 bits: 
10000000 et 01111111 represent almost the 

same value (1/2) but their hamming distance is 
maximal (8). 

Necessity to use Grey encoding. 



Using a proper coding 

For real variable functions, real variable 
encoding is used 
Crossover: 
y1 = α x1 + (1-α) x2 

y2 = (1-α) x1 + α x2 

α randomly picked in [0.5,1.5] 

Mutation: 
y1 = x1 + B(0,σ)  

 





Aircraft conflit resolution 



Modeling 

Only one manoeuver maximum by aircraft 
10, 20 or 30 degrees deviation right or left 
Then return to destination 

Offset 

Variables: 3 n 
T0: start of manoeuver 
T1: end of manoeuver 
A: angle of deviation 

Uncertainties on speeds 
 





 



 



 



 



 



Results 



Traveling Salesman 
Problem (TSP) 



TSP: crossover 



TSP: new crossover 



TSP: mutation 



Ant Colony Optimization 
(ACO) 

Mimic the ants trying to find the shortest 
path to food 



ACO 

Ants deposit pheromones according to the 
quality of path 
Ants more likely to follow paths with the 

most pheromones 
Evaporation process to prevent early 

convergence 
Stop when no more improvement 



ACO for the TSP 

Each ant builds a path 
Choice of next city 

influenced by pheromones 
already present 
Ants deposit pheromons 

on the path chosen 
At each iteration, 

pheromons evaporate 



Differential Evolution 

Pick: 
NP vector elements population with n variables 
F in [0,2] (differential weight) 
CR in [0,1] (Crossover probability) 

For each vector element x 
Pick randomly 3 distinct vectors a,b,c in population 
Pick a random index R in [1,n] 
For each i in [1,n] pick randomly ri in [1,n] 

• If ri<CR or i=R then yi=ai+F(bi-ci) else yi=xi 

If f(y) better than f(x) replace x by y in population 
 



Other evolutionary 
techniques 

Particle Swarm optimization 
Evolutionary strategies 
Genetic Programming 
….. 



Part III 
Global deterministic 

methods 



B&B and interval programming 
(global deterministic methods) 

With:  
   f(x,y) = 333.75 y6 + x2 (11 x2y2 - y6 - 121 y4 - 2) 

+ 5.5 y8 + x / (2y) 
If we compute f(77617,33096), we get 

1.172603. 
The correct value is -0.827396. 
Interval program was initially designed to 

circumvent improper rounding. 



Elementary operations 
 If X=[a,b] and Y=[c,d] 

 X+Y=[a+c,b+d] and X-Y=[a-d,b-c] 

 X*Y= 
[ac,bd] si a>0 et c>0 

[bc,bd] si a>0 et c<0<d 

[bc,ad] si a>0 et d<0 

[ad,bc] si a<0<b et c>0 

[bd,ad] si a<0<b et d<0 

[ad,bc] si b<0 et c>0 

[ad,ac] si b<0 et c<0<d 

[bd,ac] si b<0 et d<0 

[min(bc,ad),max(ac,bd)] si a<0<b et c<0<d 



Divide 

R is extended using +∝/−∝ 
X/Y= 
[b/c,+ ∝] if b<0 and d=0 
[- ∝,b/d] and [b/c,+ ∝] if b<0 and c<0<d 
[- ∝,+ ∝] if a<0<b 
[- ∝,a/c] if a>0 et d=0 
[- ∝,a/c] and [a/d,+ ∝] if a>0 et c<0<d 
[a/d,+ ∝] if a>0 and c=0 



Other operations 

All operations can be extended to interval 
arithmetic. 
For monotonous functions: 
F([a,b])=[f(a),f(b)] if f is increasing 
F([a,b])=[f(b),f(a)] if f is decreasing 
Example: Exp([a,b])=[ea,eb] 

Composing functions is done by composing 
interval extensions of these functions 



Problems 

If X=[a,b], X-X = [a-b,b-a]<>[0,0]! 
In the same way (X-1)(X+1) <> X2-1 
([0,2]-1)([0,2]+1)=[-1,1]*[1,3]=[-3,3] 
[0,2]2-1=[0,4]-1=[-1,3] 
Associativity is preserved: 
A+(B+C)=(A+B)+C 
A(BC)=(AB)C 

Distributivity is lost: A(B+C)<>AB+AC 



Branch and bound 

Generic name for all methods that divide and 
cut part of the search space. 
Here, search space is divided by cutting 

intervals in two, and bounds are generated 
by estimating the function value over each 
sub-interval. 



Minimization 

Set: L<-{[a,b]} et e<-estimator of f on [a,b] 
Extract I=[c,d] top of L. If e<c, redo. If I is too 

small, redo. If L is empty: end. 
Build I1=[c,(c+d)/2] and I2=[(c+d)/2,d]. 
Compute F(I1)=[x1,y1], F(I2)=[x2,y2], e1 et e2. 
Set e=min(e,e1,e2) 
If x1<e then insert I1 in L 
If x2<e then insert I2 in L 
Back to start. 

 



Computation of the 
estimator 

Let X=[a,b]. Different ways: 
Easiest: e=f((a+b)/2) 
Sampling: take n points equally spaced in X 
Stochastic: draw randomly n points in X 
Computer f’(x) and F’(X) et check if the sign 

of f’(x) is the same on X => f is monotonous 
and the extremum is on one side of the 
interval 
 



How to sort the list of 
intervals 

Many ways: 
First In First Out 
Largest first 
Best estimator first 
Smaller lower bound first 
etc… 



End test 

Many ways: 
The size of the interval is smaller than a 

defined value 
The size of the image of the function is 

smaller than a defined value 
Etc… 



More than one dimension 

For a multiple dimension functions, 
cutting is done on each variable in turn. 
It’s usually the largest interval which is 

cut first. 
The end test is modified accordingly. 





When to use it 

The program computing the function can 
be « easily » extended to interval 
arithmetic. 
Method efficient when there are not too 

many variables. 
In theory, computation time grows as 2N 

with N being the number of variables. 



Part IV 
Cooperation 



Cooperative algorithm 
IBBA thread 
Gets from shared memory best EA element 
=>speeds up the cutting process 

Sends to shared memory its best element 

EA thread 
Sends to shared memory its best element 
Replace worst element with best IBBA element 

Update thread 
Updates admissible domains/cleans up IBBA queue 
Projects EA elements into the closest box 



Cooperative algorithm 
Griewank D=6 



Cooperative algorithm 
Statistical results 



Cooperative algorithm 

Useful when the extremum has to be 
proved 
Advantages of both algorithms and more 
Faster than both IBBA and GA 

Same constraints as the IBBA 
Needs code that can be extended to interval 

arithmetics 
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