
Optimisation

Derivative-free optimization:
From Nelder-Mead to global
methods

Definition

Optimizing a function is looking for the set of
values of the variables that will maximize (or
minimize) the function.

Optimization is usually a very complex problem.
There are many different techniques, each
being adapted to a specific kind of problems.

There is no universal method, but a set of tools
which requires a lot of experience to be used
properly.

Optimization caracteristics

 Global/local optimization
Global optimization is searching for the absolute extremum of the

function over its entire definition domain

Local optimization is looking for the extremum of the function in
the vicinity of a given point

 Stochastic / deterministic methods
A stochastic method searches the definition domain of the

function in a random way . Two succesive runs can give different
résults.

A deterministic method always walks the search space in the
same way, and always gives the same results.

x2+y2

Part I
Local deterministic methods

Derivation (deterministic)

When it is possible to compute and solve
f’(x)=0, then we know that the extrema of
the function are in the set of solutions.
This method can only be used for very

simple analytic functions

Gradient method
(deterministic and local)

 If f(X) is a real valued
function of a real valued
vector X, and we can
calculate f’(X), we compute:

 Xn+1 = Xn - a f’(Xn), a>0
 The best choice of a>0 is

done by minimizing:
 G(a)=f(Xn– a f’(Xn))
 It’s usually impossible to

solve the above equation and
approximate methods are
used.

Local, deterministic, order
2, methods.

To accelerate computation we use the
computation of the first and second order
derivatives of the function
We need to be able to compute both, in a

reasonnable amount of time.

Local, deterministic, order
2, methods.

f(y) = f(x) + f’(x) (y-x) + ½ f’’(x) (y-x)2 + d

We minimize the y quadratic form:
f’(x)+f’’(x)(y-x)=0 => y = x – f’(x)/f’’(x)

Algorithm:
xn+1 = xn – f’(xn) / f’’(xn)

Known as Newton method
Convergence is (much) faster than the

simple gradient method.

Newton

Deterministic method:
BFGS

BFGS approximates the hessian matrix
without explicitly computing the hessian
It only requires knowledge of the first

order derivative.
It’s faster than gradient, slower (but

much more practical) than Newton
One of the most used method.

BFGS

Local deterministic:
Nelder-Mead simplex

Works by building an n+1 points polytope for
an n variables function, and by shrinking,
expanding and moving the polytope.
There’s no need to compute the first or

second order derivative, or even to know the
analytic form of f(x), which makes NMS very
easy to use.
The algorithm is very simple.

Nelder-Mead simplex

Choose n+1 points (x1,..xn+1)
Sort: f(x1)<f(x2)…<f(xn+1)
Compute barycenter: x0 = (x1+…+xn)/n
Reflection of xn+1/x0: xr=x0+(x0-xn+1)
If f(xr)<f(x1), xe=x0+2(x0-xn+1). If f(xe)<f(xr),

xn+1<-xe, else xn+1<-xr, back to sort.
If f(xn)<f(xr), xc=xn+1+(x0-xn+1)/2.If f(xc)<f(xr)

xn+1<-xc, back to sort
Otherwise: xi <- x0+(xi-x1)/2. Back to sort.

Nelder Mead

Part II
Global stochastic methods

Stochastic optimization

Do not require any regularity (functions
do no even need to be continuous)
Usually expensive regarding computation

time, and do not guarantee optimality
There are some theoretical convergence

results, but they usually don’t apply in day
to day problems.

Simulated annealing

Generate one random starting point x0inside the
search space.
Build xn+1=xn+B(0,s)
Compute: tn+1=H(tn)
If f(xn+1)<f(xn) then keep xn+1

If f(xn+1)>f(xn) then :
If |f(xn+1)-f(xn)|<e- k t then keep xn+1

Si |f(xn+1)-f(xn)|>e- k t then keep xn

Important parameters

H (the annealing schedule):
Too fast=>the algorithm converges very

quickly to a local minimum
Too slow=>the algorithm converges painfully

slowly.

Deplacement: B(0,s) must search the
whole space, and mustn’t jump too far or
too close either

Efficiency

SA can be useful on problems too difficult
for « classical methods »
Genetic algorithms are usually more

efficient when it is possible to build a
« meaningful » crossover

Genetic algorithms (GA)

Search heuristic that « mimics » the process
of natural evolution:
Reproduction/selection
Crossover
Mutation

John Holland (1960/1970)
David Goldberg (1980/1990).

Coding / population
generation

If x is a variable of f(x), to optimize on the
interval [xmin,xmax].
We rewrite x :2n (x-xmin)/(xmax-xmin)
This gives an n bits string:
For n=8: 01001110
For n=16: 0100010111010010

A complete population of N (n bits string) is
generated.

Crossover

Two parents :
01100111
10010111

One crossover point (3):
011|00111
100|10111

Two children:
011|10111
100|00111

Mutation

One randomly chosen element:
01101110

One mutation site (5):
01101110

Flip bit value:
01100110

Reproduction/selection

For each xi compute f(xi)
Compute S=Σ(f(xi))
Then for each xi :
p(xi)=f(xi)/S

The n elements of the new population are
picked from the pool of the n elements of the
old population with a bias equal to p(xi).
Better adapted elements are more reproduced

Exemple de reproduction

f(x)=4x(1-x)
x in [0,1[

AG main steps

Step 1: reproduction/selection
Step 2: crossing
Step 3: mutation
Step 4: End test.

Scaling

Fact: in the « simple » AG, the fitness of
an element x is equal to f(x)
Instead of using f(x) as fitness, f is

« scaled » by using an increasing function.
Exemples:
 5 (f(x)-10)/3: increase selection pressure
 0.2 f + 20 : diminishes selection pressure

There are also non-linear scaling functions

Scaling examples

Sharing

Selection pressure can induce too fast
convergence to local extrema.
Sharing modifies fitness depending on the

number of neighbours of an element:
fs(xi)=f(xi)/Σj s(d(xi,xj))
s is a decreasing function.
d(xi,xj) is a distance measurement between i

et j

Sharing

To use sharing, you need a distance
function over variables space
General shape of s:

Bit string coding problem

Two very different bit strings can
represent elements which are very close
to each other:
If encoding real values in [0,1] with 8 bits:
10000000 et 01111111 represent almost the

same value (1/2) but their hamming distance is
maximal (8).

Necessity to use Grey encoding.

Using a proper coding

For real variable functions, real variable
encoding is used
Crossover:
y1 = α x1 + (1-α) x2

y2 = (1-α) x1 + α x2

α randomly picked in [0.5,1.5]

Mutation:
y1 = x1 + B(0,σ)

Aircraft conflit resolution

Modeling

Only one manoeuver maximum by aircraft
10, 20 or 30 degrees deviation right or left
Then return to destination

Offset

Variables: 3 n
T0: start of manoeuver
T1: end of manoeuver
A: angle of deviation

Uncertainties on speeds

Results

Traveling Salesman
Problem (TSP)

TSP: crossover

TSP: new crossover

TSP: mutation

Ant Colony Optimization
(ACO)

Mimic the ants trying to find the shortest
path to food

ACO

Ants deposit pheromones according to the
quality of path
Ants more likely to follow paths with the

most pheromones
Evaporation process to prevent early

convergence
Stop when no more improvement

ACO for the TSP

Each ant builds a path
Choice of next city

influenced by pheromones
already present
Ants deposit pheromons

on the path chosen
At each iteration,

pheromons evaporate

Differential Evolution

Pick:
NP vector elements population with n variables
F in [0,2] (differential weight)
CR in [0,1] (Crossover probability)

For each vector element x
Pick randomly 3 distinct vectors a,b,c in population
Pick a random index R in [1,n]
For each i in [1,n] pick randomly ri in [1,n]

• If ri<CR or i=R then yi=ai+F(bi-ci) else yi=xi

If f(y) better than f(x) replace x by y in population

Other evolutionary
techniques

Particle Swarm optimization
Evolutionary strategies
Genetic Programming
…..

Part III
Global deterministic

methods

B&B and interval programming
(global deterministic methods)

With:
 f(x,y) = 333.75 y6 + x2 (11 x2y2 - y6 - 121 y4 - 2)

+ 5.5 y8 + x / (2y)
If we compute f(77617,33096), we get

1.172603.
The correct value is -0.827396.
Interval program was initially designed to

circumvent improper rounding.

Elementary operations
 If X=[a,b] and Y=[c,d]

 X+Y=[a+c,b+d] and X-Y=[a-d,b-c]

 X*Y=
[ac,bd] si a>0 et c>0

[bc,bd] si a>0 et c<0<d

[bc,ad] si a>0 et d<0

[ad,bc] si a<0<b et c>0

[bd,ad] si a<0<b et d<0

[ad,bc] si b<0 et c>0

[ad,ac] si b<0 et c<0<d

[bd,ac] si b<0 et d<0

[min(bc,ad),max(ac,bd)] si a<0<b et c<0<d

Divide

R is extended using +∝/−∝
X/Y=
[b/c,+ ∝] if b<0 and d=0
[- ∝,b/d] and [b/c,+ ∝] if b<0 and c<0<d
[- ∝,+ ∝] if a<0<b
[- ∝,a/c] if a>0 et d=0
[- ∝,a/c] and [a/d,+ ∝] if a>0 et c<0<d
[a/d,+ ∝] if a>0 and c=0

Other operations

All operations can be extended to interval
arithmetic.
For monotonous functions:
F([a,b])=[f(a),f(b)] if f is increasing
F([a,b])=[f(b),f(a)] if f is decreasing
Example: Exp([a,b])=[ea,eb]

Composing functions is done by composing
interval extensions of these functions

Problems

If X=[a,b], X-X = [a-b,b-a]<>[0,0]!
In the same way (X-1)(X+1) <> X2-1
([0,2]-1)([0,2]+1)=[-1,1]*[1,3]=[-3,3]
[0,2]2-1=[0,4]-1=[-1,3]
Associativity is preserved:
A+(B+C)=(A+B)+C
A(BC)=(AB)C

Distributivity is lost: A(B+C)<>AB+AC

Branch and bound

Generic name for all methods that divide and
cut part of the search space.
Here, search space is divided by cutting

intervals in two, and bounds are generated
by estimating the function value over each
sub-interval.

Minimization

Set: L<-{[a,b]} et e<-estimator of f on [a,b]
Extract I=[c,d] top of L. If e<c, redo. If I is too

small, redo. If L is empty: end.
Build I1=[c,(c+d)/2] and I2=[(c+d)/2,d].
Compute F(I1)=[x1,y1], F(I2)=[x2,y2], e1 et e2.
Set e=min(e,e1,e2)
If x1<e then insert I1 in L
If x2<e then insert I2 in L
Back to start.

Computation of the
estimator

Let X=[a,b]. Different ways:
Easiest: e=f((a+b)/2)
Sampling: take n points equally spaced in X
Stochastic: draw randomly n points in X
Computer f’(x) and F’(X) et check if the sign

of f’(x) is the same on X => f is monotonous
and the extremum is on one side of the
interval

How to sort the list of
intervals

Many ways:
First In First Out
Largest first
Best estimator first
Smaller lower bound first
etc…

End test

Many ways:
The size of the interval is smaller than a

defined value
The size of the image of the function is

smaller than a defined value
Etc…

More than one dimension

For a multiple dimension functions,
cutting is done on each variable in turn.
It’s usually the largest interval which is

cut first.
The end test is modified accordingly.

When to use it

The program computing the function can
be « easily » extended to interval
arithmetic.
Method efficient when there are not too

many variables.
In theory, computation time grows as 2N

with N being the number of variables.

Part IV
Cooperation

Cooperative algorithm
IBBA thread
Gets from shared memory best EA element
=>speeds up the cutting process

Sends to shared memory its best element

EA thread
Sends to shared memory its best element
Replace worst element with best IBBA element

Update thread
Updates admissible domains/cleans up IBBA queue
Projects EA elements into the closest box

Cooperative algorithm
Griewank D=6

Cooperative algorithm
Statistical results

Cooperative algorithm

Useful when the extremum has to be
proved
Advantages of both algorithms and more
Faster than both IBBA and GA

Same constraints as the IBBA
Needs code that can be extended to interval

arithmetics

	Optimisation
	Definition
	Optimization caracteristics
	x2+y2
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Part I�Local deterministic methods
	Derivation (deterministic)
	Gradient method (deterministic and local)
	Local, deterministic, order 2, methods.
	Local, deterministic, order 2, methods.
	Newton
	Deterministic method: BFGS
	BFGS
	Local deterministic: Nelder-Mead simplex
	Nelder-Mead simplex
	Nelder Mead
	Part II�Global stochastic methods
	Stochastic optimization
	Simulated annealing
	Important parameters
	Efficiency
	Genetic algorithms (GA)
	Coding / population generation
	Crossover
	Mutation
	Reproduction/selection
	Exemple de reproduction
	AG main steps
	Scaling
	Scaling examples
	Sharing
	Sharing
	Bit string coding problem
	Using a proper coding
	Slide Number 43
	Aircraft conflit resolution
	Modeling
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Results
	Traveling Salesman Problem (TSP)
	TSP: crossover
	TSP: new crossover
	TSP: mutation
	Ant Colony Optimization (ACO)
	ACO
	ACO for the TSP
	Differential Evolution
	Other evolutionary techniques
	Part III�Global deterministic methods
	B&B and interval programming (global deterministic methods)
	Elementary operations
	Divide
	Other operations
	Problems
	Branch and bound
	Minimization
	Computation of the estimator
	How to sort the list of intervals
	End test
	More than one dimension
	Slide Number 74
	When to use it
	Part IV�Cooperation
	Cooperative algorithm
	Cooperative algorithm�Griewank D=6
	Cooperative algorithm�Statistical results
	Cooperative algorithm

