
Optimal combinations of Air Traffic Control sectors
using classical and stochastic methods

David Gianazza Jean-Marc Alliot Géraud Granger
LOG (Laboratoire d’Optimisation Globale) CENA/ENAC
7, avenue Edouard Belin 31055 Toulouse Cedex, FRANCE

Abstract: This paper introduces several algorithms
which build optimal configurations of Air
Traffic Control sectors, taking into account
traffic prediction, sector capacities and the
number of available control positions.

Keywords: Genetic Algorithm, Branch&Bound,
A∗, Air Traffic Flow Management, Sector
Configuration

1 Vocabulary and acronyms

Sector: the airspace under the responsibility of each
Air Traffic Control Center is divided into smaller
volumes calledsectors. Sectors may be com-
bined with other sectors and controlled by a
team of two air traffic controllers.

Control position: a piece of furniture with communi-
cation and surveillance equipment (radar screens,
radio, telephone,...), manned by a team of two
controllers who ensure sufficient separation be-
tween the aircraft under their responsibility.

Sectors configuration: the mapping ofn sectors onto
k control positions.

Capacity: a threshold value of the traffic flow through
a sector or group of sectors, above which it is
considered overloaded. If too many aircraft fly
through the same sector at the same time, the
controllers in charge of that sector cannot safely
handle the traffic.

CFMU : the European Central Flow Management Unit
ensures that the traffic flows do not exceed the
capacities, generally by delaying the departure
of some aircraft when necessary.

ACC or ATCC: Air (Traffic) Control Center.

Flow management position (FMP): a piece of furni-
ture with telephones and computers, manned by
a team of FMP operators, which are the corre-
spondents of the CFMU in each ACC.

ACC schedule: an estimation of the sector configu-
rations that will be used the next day (or the
day after), taking account of the predicted traf-
fic and the available resources of the ACC (con-
trollers and control positions).

2 Introduction

The first step of the Air Traffic Flow Manage-
ment (ATFM) process is to define the predicted
schedule for each Air Traffic Control Center one
or two days ahead. This is done by forecasting
the traffic and by comparing this estimation to the
available resources, in order to determine what
sector configuration would be the most adapted
to the predicted traffic and if some overloads can
be foreseen.

In Europe, the ACC schedule is elaborated by
the Flow Management Position (FMP) of each
ATC Center. Some automated tools are available
to help the operators to perform this task. For ex-
ample the French FMP operator can choose a sec-
tor configuration among a set of pre-defined con-
figurations, and match it with the traffic demand
so that traffic overloads appear immediately. But
apart from his own experience, he has no way of
knowing if the chosen configuration is the most
adequate, or if another one could better balance
the traffic between the manned control positions.
An additional drawback of the current method is
that it is limited to a set of statically defined con-
figurations, which is a fairly small subset of all
the possible ways to combine sectors, as we will
see later.

The present paper describes two classical tree
search algorithms and a genetic algorithm that take
as input the traffic flows and build optimal sector
configurations considering the airspace capacity
constraints and also the maximum number of con-

trol positions that can be manned at each time of
the day. This optimization is made in a realistic
context, using the airspace description data, the
traffic data, the number of available control posi-
tions, and the sector capacities of the French ATC
centers.

3 Related work

The problem of optimizing sector configura-
tions has already been addressed in [1], although
with a less realistic model, and also in [6]. In [1],
genetic algorithms were used in a toy ATC net-
work to balance workloads by combining sectors,
with a chosen number of control positions. Only
convex sectors were considered.

In [6], integer programming techniques were
used in a realistic context to minimize the sum of
traffic overloads (called deficits of capacity) by
selecting patterns among a reduced set of stati-
cally defined configurations. A pattern is a con-
figuration associated to a time period. The num-
ber of control positions is an input parameter, as
in [1]. An attempt is made to consider the traf-
fic throughput as a variable, by allowing some
macroscopic shifting of traffic loads along the time
axis or from a sector to another. The convergence
of the iterative algorithm which is used in that
case seems not sure. However, the results show
significant improvements when compared to the
current manual methods.

The optimization problem addressed in the present
paper is different : the optimum we are trying
to reach is the sector configuration for which the
traffic load is as close as possible to the capac-
ity of each sector or group of sectors of the con-
figuration, so traffic overloads as well as traffic
under-loads are considered. The search of an op-
timal configuration is not restricted to a subset of
manually entered configurations, but explores the
whole set of possible configurations which can be
obtained by combining operational ATC sectors.
The number of control positions is a variable of
the cost function we are trying to minimize, con-
strained by an upper limit as there may not always
be enough ATC controllers to man all the posi-
tions that would be needed.

4 Model

A “good” configuration is a configuration for
which there are no traffic overloads (or the small-
est possible ones), and for which the traffic load is
balanced as well as possible between the manned
control positions, while arming the minimum num-
ber of positions. Let us formulate this as a mini-
mization problem.

Let us define the function∆ by

∆(x, t) = workload(x, t)− capacity(x, t)

wherex is a sector or group of sectors,t is the
time,workload is the traffic load (for exampleN
aircraft entering sectorx betweent and t + w,
wherew is a chosen time window), andcapacity
is the threshold value for the workload. The ca-
pacity of each sector or group of sectors may also
depend on specific criterions (like military activ-
ity...).

The operator may allow some tolerances around
the value of the capacity. These lower and upper
tolerancesl andu are taken into account in the
evaluation of a configuration. For this, we will
need to define the overloads and underloads as
follows :

∆++(x, t) = ∆(x, t) if ∆(x, t) > u
0 otherwise

∆+(x, t) = ∆(x, t) if 0 ≤ ∆(x, t) ≤ u
0 otherwise

∆−(x, t) = |∆(x, t)| if l ≤ ∆(x, t) ≤ 0
0 otherwise

∆−−(x, t) = |∆(x, t)| if ∆(x, t) < l
0 otherwise

Let us then define the following functions :

Npos(t) the number of control positions in the
configuration

C++(t) =
∑

x∈config

(∆++(x, t))2

C+(t) =
∑

x∈config

∆+(x, t)

C−(t) =
∑

x∈config

∆−(x, t)

C−−(t) =
∑

x∈config

(∆−−(x, t))2

The problem will then consist in minimizing
the following cost function :

costconfig = a.C+++b.Npos+c.C−−+d.(C++C−)
(1)

while respecting the constraint :Npos(t) ≤ Mpos(t)
wherea, b, c, andd chosen factors of decreasing
value andMpos is the maximum number of con-
trol positions available at each time of the day.

Instead of minimizingcostconfig, and in or-
der to take better account of the relative weights
of the different costs, we will in fact maximize
evalconfig, such that thek1 most significant dig-
its of evalconfig(x, t) refer to the costC++, the
nextk2 digits refer toNpos, and so on:

xxxxx︸ ︷︷ ︸
k1

xx︸︷︷︸
k2

xxxxx︸ ︷︷ ︸
k3

xxx︸︷︷︸
k4

evalconfig = 10k2+k3+k4 ×N(k1, C++)
+10k3+k4 ×N(k2, Npos)
+10k4 ×N(k3, C−−)
+N(k4, C+ + C−)

(2)
whereN is a function such that

N(ki, C) = bmax(0, (10ki − 1)− C)c

andk1, k2, k3, andk4 are chosen such that(10ki−
1) is an upper bound of the corresponding cost, if
possible.

5 Problem complexity

The difficulty of the problem is mostly due to
the high number of possible configurations which
can be built from a set of sectors. A configura-
tion is the mapping ofn sectors ontok control
positions.

Let us first try to find how many ways there
are to part a set ofn elements intok subsets. If
P (n, k) is this number, it verifies the following
equations :

∀n ≥ 1
P (n, 1) = 1 (one group ofn elements)
P (n, n) = 1 (one partition ofn groups of one element)
P (n, k) = 0 if k > n (we cannot make more thann groups)
P (n, k) = k ∗ P (n− 1, k) + P (n− 1, k − 1) if 1 < k < n

The number of all possible partitions will then
beP (n) =

∑n
k=1 P (n, k). For 17 sectors (Brest

ATCC), this would give around 83 billion possi-
bilities. However, this value is not realistic : many
of the partitions could not be used in an opera-
tional context. For example, a partition contain-
ing a group in which one sector is a neighbor of
no other sector in the group is not a valid config-
uration. The set of all possible partitions (that we
have counted above) could theoretically be ob-
tained by exploring the tree of all possibilities ,
although this would become quickly impractical
when the number of sector increases.

In order to estimate the difficulty of the real
problem, let us consider only the operational sec-
tors and groups of sectors defined in each ACC
database. We will obtain all operational configu-
rations by exploring a tree which nodes are lists of
couples(g,G) (cf figure 1 illustrating the Branch&Bound),
whereg is a group under construction andG is the
set of valid groups compatible withg in the con-
text of the configuration under construction. An
elementh of G is “compatible” withg if it con-
tains all the sectors ofg, but no sector of the other
groups in the configuration (the other "g"’s of the
node). If one of theG sets is empty, then there is
no need to continue the search from the consid-
ered node : it will lead to no valid configuration.

Number of sectors Number of Number of
elem. groups partitions configs

Aix 24 42 4.461017 123,965
Bordeaux 22 65 4.451015 551,032
Brest 17 52 8.281010 14,832
Paris (West) 11 17 678,570 192
Paris (East) 12 22 4,213,597 399
Reims 12 17 4,213,597 249

Table 1: Number of possible sector configura-
tions for the French ATCCs (in 1999)

The methods presented above allow us to count
the number of configurations and estimate the dif-
ficulty of the problem. The results for the French
ATC centers are shown in table 1, which high-
lights the combinatorial relation between the num-
ber of partitions and the number of sectors.

The number of operational configurations which
we can build with the sectors or groups of sectors
described in the ATCCs airspace data goes from a
few hundreds to a half million. So, we can expect
that the use of exhaustive tree search techniques

will lead to optimal configurations within a rea-
sonable computation time, at least for relatively
small ATC centers and with sector combinations
restricted to the groups described in the ATCCs
airspace data. However, as the sector configu-
ration optimization problem may be extended to
larger ATCCs, and as we may wish to use a wider
range of sector combinations, genetic algorithms
were also experimented to solve the problem.

6 Classical algorithms

A basic algorithm: In the previous section, we
have mentioned an algorithm which builds
all the possible operational configurations.
A basic optimization method consists in eval-
uating the cost (cf definition 1) of each con-
figuration in order to find the best one. The
basic algorithm explores all the configura-
tions. It is memory and time consuming,
but complete : we can be sure that it returns
the optimum of the evaluation function. So
it will be used as a reference for the other
algorithms presented hereafter.

Valid groups of sectors :
a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

1

?6
then cut this branch

?

?

if Eval(node) < Best_val

otherwise continue the search

5

4

2

3

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})({1},{s,d}) ({2,3,4},{})

({1,2,3},{e}) ({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2},{s,a})({1,2},{e})

({1},{s,d,e})

({1,2,3,4,5},{e}) ({1,2,3,4},{}) ({5},{s})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a}) and so on...

({1,4},{}) ({2,3},{a})

Best_val= Eval_conf({d},{a},{4})
Best_conf= ({d},{a},{4})
if Eval_conf({d},{a},{4})>Best_val then

({1,5},{d}) ({2,3},{a}) ({4},{s})

Best_conf= ({e})

Best_val= Eval_conf({e})

Figure 1:Branch & boundsearch for an optimal
sector configuration

A Branch & boundalgorithm: The idea of thebranch
& bound algorithm illustrated in figure 1
is to avoid exploring every branch of the
tree. To do so, it needs to evaluate the nodes
in order to decide, by comparison with the
best configuration found so far, whether to
continue or not the search along a given
branch. The cost (resp. evaluation) of a
node must be a lower bound (resp. an upper
bound) of all the costs (resp. evaluations)
of configurations which can be reached from
that node. A node of our tree search algo-
rithm is a configuration under construction

(see figure 1), i.e. a list of couples(g,G),
whereg is a group under construction and
G is the set of valid groups compatible with
g in the context of the configuration under
construction.

For a better understanding of this notion of
compatibility, let us consider node 6 of the
example shown in figure 1. This node is
represented by :({1}, {s, d}) ({2}, {s, a}).
The valid groups compatibles with the group
under construction{1} are the singletons,
which is {1}, and the groupd = {1, 5}.
These groups are the only ones which con-
tain{1} but not{2}.

The cost function for a node is similar to
the cost of a configuration. Let us define a
functionbest such thatbest(G) returns the
elementh (a sector or group of sectors) of
G, for which the differenceworkload(h, t)−
capacity(h, t) is the smallest possible un-
derload, or the smallest possible overload
if all groups ofG are overloaded. We will
then define the cost (resp. evaluation) of a
node as in definition 1 (resp. 2), except that
Npos will be the number of couples(g,G)
in the node, and that only∆++ and ∆+

will be considered, takingbest(G) as input
instead of an operational sectorx of a con-
figuration.

An algorithm inspired from A∗: Like theBranch
& bound, theA∗ is a tree search algorithm.
However, instead of simply storing the best
leaf found so far, all the explored nodes are
stored and sorted by valuation.

In order to do so, theA∗ as described in [5]
needs a cost function defining the cost of
each state transition, and a function (called
heuristic) underestimating the cost of the
remaining transitions between the current
node and the end of the search.

For our sector configuration problem, we
will try to minimize the costconfig func-
tion described in definition 1, by searching
a path in the tree illustrated in figure 1. But
instead of comparing the node evaluation
with the evaluation of the best configura-
tion found so far like in figure 1, the nodes
already explored are stored into a priority
queue sorted according to the node eval-

uation. TheA∗ will then iteratively con-
sider the node with lowest cost, evaluate
its children nodes and insert them in the
priority queue, until a leaf of the tree is
reached. This leaf is then the optimal sector
configuration. The evaluation of a configu-
ration and a node is the same as in 1 and the
Branch & boundalgorithm respectively.

7 Genetic algorithm

A genetic algorithm has also been tested to solve
the sector configuration problem. The genetic al-
gorithm considers a population of chromosomes,
which evolves by crossover, mutation, and selec-
tion of the fittest individuals, as described in [3]
and [4].

A chromosomewill be a sector configuration.
Each chromosome is composed of several genes.
A gene is either an elementary sector or a group of
sectors. A fitness value is assigned to each chro-
mosome. The raw fitnessf of a configuration will
be given byevalconfig (see definition 2).

A clusterized sharingoperator is applied to the
raw fitnesses. The aim of sharing is to avoid that a
chromosome with a good fitness reproduces itself
to the detriment of the other chromosomes, thus
narrowing the search to a single optimal or sub-
optimal mode. The chromosomes clustering of
this sharing operator is based on distance criteria.
For our problem, the difficulty to implement shar-
ing lies in the definition of a "distance" between
sector configurations. Like the distance of Ham-
ming which uses the number of genes that differ
between two chromosomes, the pseudo-distance
that was chosen for our problem is based on a
gene comparison, except that the two chromosomes
may not have the same number of genes. Let
ni (respectivelynj) be the number of genes of
the chromosomei (respectivelyj). The chosen
pseudo-distance is defined byd(i, j) = min(ni, nj)−
n wheren is the number of identical genes be-
tween the two chromosomes. In addition to the
sharing operator, a scaling operator (sigma trun-
cation) is applied, in order to smooth the differ-
ences between fitnesses of good chromosomes and
bad ones. This way, the selection will let a better
chance to bad chromosomes to reproduce them-
selves, and the domain will be more widely ex-
plored.

The crossover operator splits the two parent

configurations and completes each half configura-
tion with the other parent’s genes. The resulting
incomplete chromosome is then completed with
valid groups or sectors. A local fitness is asso-
ciated to each gene in order to select the parents
genes in decreasing order of local fitness. It was
shown in [2] that an adapted crossover operator
using local fitnesses increases the convergence rate
for the optimization of partially separable func-
tions. In our problem, the local fitness is similar
to the raw fitness of the chromosome, although it
takes account of the overloads and underloads of
a single gene.

The mutation operator first randomly chooses
one gene of the chromosome. Another gene is
randomly chosen among a list comprising the first
chosen gene and its neighbors (sectors or groups
of sectors of the configuration which have a com-
mon border with the first chosen sector or group
of sector). The sectors of the chosen genes are
then recombined into one or several new genes
(up to three). The splitting of a single group would
allow only mutations towards less loaded config-
urations with an increasing number of control po-
sitions, whereas the recombination of two neigh-
bors may lead to configurations with less items,
which may be interesting when the traffic is low.

8 Results

A graphical interface has been developed to
display the results of the optimizations. The lan-
guages Ocaml and OcamlTk were used to code
respectively the algorithms and the interface. The
program runs on a PC Pentium IV (1.8 GHz),
with Linux as operating system.

The input parameters are the date, the selected
ATCC, the type of traffic (raw demand, final de-
mand...), the capacity tolerances, the maximum
number of available control positions, the cho-
sen time step and time horizon (for the compu-
tation of traffic flows). The program displays an
optimized sector configuration for each time sub-
division of the day. The color code is : Green
(grey) when the traffic load is under the capacity
minus the lower tolerance for the capacity ; Yel-
low (white) when the traffic load is between the
margins of tolerance ; Red (dark grey) when the
traffic load is over the capacity plus the upper tol-
erance.

The upper part of figure 2 shows the result of

Figure 2: Optimal sector configurations with (up)
or without (down) constraints on the number of
available positions (example of Bordeaux ACC)

the optimization for Bordeaux ATCC, with the
raw traffic demand and with no constraint on the
available number of control positions. In this case,
the remaining overloaded sectors are necessarily
elementary sectors, or operational groups which
cannot be split (some elementary sectors are de-
fined and used only to improve flexibility by choos-
ing different ways to combine two of them into an
operational group).

The lower part of figure 2 shows the same op-
timization but with constraints on the available
number of positions. These constraints are taken
into account in the evaluation functions by divid-
ing by two the evaluation when the number of
control positions in the configuration is greater
than the available maximum, thus penalizing these
configurations. The constraints used in the right
part of figure 2 are directly issued from the ACC
schedule that was sent to the CFMU by Bordeaux
FMP for that day. These constraints induce addi-
tional overloads (like between 4 and 5 o’clock in
the example) on combined sectors which the al-

gorithms are unable to split because there are not
enough available control positions.

By comparing the two schedules we see that
Bordeaux ATCC was under-capacitive in the early
morning, and over-capacitive at other times of the
day.

The tree search algorithms provide optimal sec-
tor configurations for each ATCCs, verified with
the basic algorithm when possible (for Brest, Paris
and Reims ATCCs). The table 2 shows the com-
putation times for these algorithms, with the raw
traffic demand and no constraint on the number
of maximum positions. The fastest is thebranch
& bound. TheA∗ is slower because the chosen
heuristic is not a very good estimate of what it re-
ally costs to reach the best configuration achiev-
able from a given node, thus inducing high back-
tracking.

Aix Bord. Brest Paris(E) Paris(W) Reims
Basique n.t. n.t. 14.44 0.06 0.03 0.02
B&B 34.06 6.06 1.45 0.08 0.07 0.04
A∗ 134.88 10.12 10.05 0.08 0.04 0.02

Table 2: Computation times (in seconds) for the
deterministic algorithms

Although there are more possible configura-
tions for Bordeaux ATCC than for Aix ATCC (see
table 1 about the problem complexity), the com-
putation time for Aix ATCC is higher than for
Bordeaux as there are more sectors in Aix than in
Bordeaux. The tree of all possible configurations
is searched "depth first", and the depth depends
on the number of sectors.

For the genetic algorithm,10 different values
of the random seed were tested for Bordeaux ATCC,
with a crossover probability of 0.6 and a muta-
tion probability of 0.2. Table 3 shows for each
time step of the day the number of configurations
which where different from the optimum. The
lines labelled(+1) show the number of occur-
rences when there was exactly one more control
position in the configuration found by the GA than
in the optimal configuration. The lines labelled
(> +1) show the number of occurrences when
the difference was greater than one control posi-
tion.

When they were not optimal, the solutions found
were qualitatively close to the optimum.

The genetic algorithm is slower than the tree
search methods, but provides several optimal or
near-optimal solutions. It is not very significant

Step 0 1 2 3 4 5 6 7 8 9 10 11
220 gen. fails 0 0 0 0 0 0 0 0 2 0 1 5
120 elem. +1 0 0 0 0 0 0 0 0 0 0 0 2

> +1 0 0 0 0 0 0 0 0 0 0 0 0
220 gen. fails 0 0 0 0 0 0 0 0 3 0 0 3
130 elem. +1 0 0 0 0 0 0 0 0 0 0 0 1

> +1 0 0 0 0 0 0 0 0 0 0 0 1
300 gen. fails 0 0 0 0 0 0 0 0 0 0 0 0
220 elem. +1 0 0 0 0 0 0 0 0 0 0 0 0

> +1 0 0 0 0 0 0 0 0 0 0 0 0

Step 12 13 14 15 16 17 18 19 20 21 22 23
220 gen. fails 2 0 1 3 0 1 0 0 1 0 0 0
120 elem. +1 0 0 1 0 0 1 0 0 1 0 0 0

> +1 0 0 0 0 0 0 0 0 0 0 0 0
220 gen. fails 3 0 2 2 0 0 0 0 1 0 0 0
130 elem. +1 0 0 2 0 0 0 0 0 1 0 0 0

> +1 0 0 0 0 0 0 0 0 0 0 0 0
300 gen. fails 0 0 1 0 0 0 0 0 0 0 0 0
220 elem. +1 0 0 0 0 0 0 0 0 0 0 0 0

> +1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: GA results for Bordeaux ATCC

to compare the overall computation times of the
genetic algorithm and the tree search algorithm
when the minimization problem is easily solved.
In such cases (at night for example), the genetic
algorithm will run the same number of genera-
tions whatever the difficulty of the problem, whereas
the B&B will find an optimal solution among the
first branches it explores. Table 4 compares for
Bordeaux ATCC the computation times of each
time step between 5 a.m and 7 p.m., for 220 gen-
erations and a population size of 120 configura-
tions:

Step 5 6 7 8 9 10 11
B&B 0.23 0.05 0.17 0.55 0.95 0.21 0.38
GA 15.69 14.88 17.19 16.08 15.37 15.80 15.75

Step 12 13 14 15 16 17 18
B&B 0.54 0.21 0.66 0.59 0.58 0.35 0.56
GA 16.42 15.62 17.41 16.85 15.65 14.98 13.70

Table 4: GA and B&B detailed computation
times for Bordeaux ATCC

9 Conclusion

The tree search algorithms as well as the ge-
netic algorithm provide optimal sector configura-
tions, using the same parameters and constraints
than in the current FMP/CFMU process. The re-
sults are computed in a time short enough for an
operational use. The tree search algorithms are
faster than the genetic algorithm when applied to
the French ATC centers and while restricting the
ways to group sectors to a set of operational groups

(issued from each ATCC airspace description database).
However, the combinatorial relation that we have

shown between the number of sectors and the num-
ber of partitions and configurations is such that
the tree search algorithms may prove impractical
in the context of larger ATC Centers or if a wider
set of operational groups is used. In such a con-
text, the genetic algorithm is a good alternative. It
provides several optimal or near-optimal configu-
rations in a chosen computation time.

So far, we have considered the sector config-
uration optimization only in the context of the
pre-tactical ACC schedule estimation, based on
the traffic flows and the capacity constraints. The
proposed algorithms could as well be envisioned,
with adapted workload and constraints definitions,
to tactically propose sector configurations to con-
trol room managers.

References

[1] Daniel Delahaye, Jean-Marc Alliot, Marc
Schoenauer, and Jean-Loup Farges. Genetic
algorithms for automatic regroupement of air
traffic control sectors. InProceedings of the
Conference on Evolutionary Programming,
1995.

[2] N. Durand and J. M. Alliot. Genetic
crossover operator for partially separable
functions. InProceedings of the third annual
Genetic Programming Conference, 1998.

[3] David Goldberg.Genetic Algorithms. Addi-
son Wesley, 1989. ISBN: 0-201-15767-5.

[4] Zbigniew Michalewicz. Genetic algo-
rithms+data structures=evolution programs.
Springer-Verlag, 1992. ISBN: 0-387-55387-.

[5] Judea Pearl. Heuristics. Addison-Wesley,
1984. ISBN: 0-201-05594-5.

[6] C. Verlhac and S. Manchon. Optimization
of opening schemes. InProceedings of the
fourth USA/Europe Air Traffic Management
R&D Seminar, 2001.

	Vocabulary and acronyms
	Introduction
	Related work
	Model
	Problem complexity
	Classical algorithms
	Genetic algorithm
	Results
	Conclusion

